FW 891
Click here to view presentation online
8 November 2023

Burnham and Anderson 1998; Navarro 2018; Bolker 2023
Navarro 2018; Bolker 2023
Navarro 2018; Bolker 2023
Navarro 2018; Bolker 2023
Navarro 2018; Bolker 2023
Navarro 2018; Bolker 2023
Navarro 2018; Bolker 2023
Navarro 2018; Bolker 2023
Arthur Schopenhauer the philosophy Bunny peering into the inferential abyss
Vehtari et al. 2019
Vehtari et al. 2019
Vehtari et al. 2019
Vehtari et al. 2019
Vehtari et al. 2019
Vehtari et al. 2019
Vehtari 2023
Vehtari 2023
Vehtari 2023
Vehtari 2023
Vehtari 2023
Vehtari 2023
Vehtari 2023
Vehtari 2023
\[ \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\mathrm{E}\left(y_{i} \mid \theta\right)\right)^{2} \]
Gelman et al. 2014; Vehtari et al. 2016
Gelman et al. 2014; Vehtari et al. 2016
Consider data \(y_{1}, ... , y_{n}\) modeled as independent given parameters \(\theta\)
Also suppose we have a prior distribution \(p(\theta)\) yielding a posterior \(p(\theta \mid y)\)
And a posterior predictive distribution \(p(\tilde{y} \mid y)=\int p\left(\tilde{y}_{i} \mid \theta\right) p(\theta \mid y) d \theta\)
We can then define a measure of predictive accuracy for the n data points as:
Gelman et al. 2014; Vehtari et al. 2016
Consider data \(y_{1}, ... , y_{n}\) modeled as independent given parameters \(\theta\)
Also suppose we have a prior distribution \(p(\theta)\) yielding a posterior \(p(\theta \mid y)\)
And a posterior predictive distribution \(p(\tilde{y} \mid y)=\int p\left(\tilde{y}_{i} \mid \theta\right) p(\theta \mid y) d \theta\)
We can then define a measure of predictive accuracy for the n data points as:
\[ \begin{aligned} \text { elpd } & =\text { expected } \log \text { pointwise predictive density for a new dataset } \\ & =\sum_{i=1}^{n} \log \left(\frac{1}{S} \sum_{s=1}^{S} p\left(y_{i} \mid \theta^{s}\right)\right) . \end{aligned} \]
Gelman et al. 2014; Vehtari et al. 2016
Consider data \(y_{1}, ... , y_{n}\) modeled as independent given parameters \(\theta\)
Also suppose we have a prior distribution \(p(\theta)\) yielding a posterior \(p(\theta \mid y)\)
And a posterior predictive distribution \(p(\tilde{y} \mid y)=\int p\left(\tilde{y}_{i} \mid \theta\right) p(\theta \mid y) d \theta\)
We can then define a measure of predictive accuracy for the n data points as:
\[ \begin{aligned} \text { elpd } & =\text { expected } \log \text { pointwise predictive density for a new dataset } \\ & =\sum_{i=1}^{n} \log \left(\frac{1}{S} \sum_{s=1}^{S} p\left(y_{i} \mid \theta^{s}\right)\right) . \end{aligned} \]
Gelman et al. 2014; Vehtari et al. 2016
Roberts et al. 2017
Roberts et al. 2017
Roberts et al. 2017
Roberts et al. 2017
Gelman et al. 2013; Vehtari 2023
Gelman et al. 2013; Vehtari 2023
Gelman et al. 2013; Vehtari 2023
Gelman et al. 2013; Vehtari 2023
Gelman et al. 2013; Vehtari 2023
Gelman et al. 2013; Vehtari 2023
M-closed vs. M-open worlds
Navarro 2019
Vehtari et al. 2016; 2017
Vehtari et al. (2016; 2017) introduced a method that approximates the evaluations of leave-one-out cross validation inexpensively using only the data point log likelihoods of a single model fit
Pareto-smoothed importance sampling (PSIS-LOO) allows us to compute an approximation to LOO without re-fitting the model many times
Vehtari et al. 2016; 2017
\[ \int p\left(y_{1} \mid \theta\right) d \theta \]
\[ \frac{1}{S} \sum_{s} p\left(y_{1} \mid \theta_{s}\right) \]
Vehtari et al. 2016; 2017
\[ \frac{1}{\sum_{s} w_{s}} \sum_{s} w_{s} p\left(y_{1} \mid \theta_{s}\right) \]
\[ \frac{1}{p\left(y_{1} \mid \theta_{s}\right)} \]
Vehtari et al. 2016; 2017
Vehtari et al. 2016; 2017
Vehtari et al. 2016; 2017
Vehtari et al. 2016; 2017
Vehtari et al. 2016; 2017
Vehtari et al. 2016; 2017
Vehtari et al. 2016; 2017
Burnham and Anderson 1998. Model selection and inference: a practical information-theoretic approach. Springer-Verlag, New York, USA.
Gelman , A., Hwang, J. & Vehtari , A. 2014. Understanding predictive information criteria for Bayesian models. Stat. Comput., 24, 997 1016.
Navarro, D.J. 2019. Between the devil and the deep blue sea: tensions between scientific judgement and statistical model selection. Compuational Brain and Behavior. 2:28-34.
Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. “Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and WAIC.” Statistics and Computing 27 (5): 1413–32.
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. 2019. Pareto smoothed importance sampling. preprint arXiv:1507.02646.
Vehtari 2023. https://users.aalto.fi/~ave/CV-FAQ.html#1_What_is_cross-validation